Multi-source/component spray coating for polymer solar cells.
نویسندگان
چکیده
A multi-source/component spray coating process to fabricate the photoactive layers in polymer solar cells is demonstrated. Well-defined domains consisting of polymer:fullerene heterojunctions are constructed in ambient conditions using an alternating spray deposition method. This approach preserves the integrity of the layer morphology while forming an interpenetrating donor (D)/acceptor (A) network to facilitate charge transport. The formation of multi-component films without the prerequisite of a common solvent overcomes the limitations in conventional solution processes for polymer solar cells and enables us to process a wide spectrum of materials. Polymer solar cells based on poly(3-hexylthiophene):[6,6]-phenyl C(61) butyric acid methyl ester spray-coated using this alternating deposition method deliver a power conversion efficiency of 2.8%, which is comparable to their blend solution counterparts. More importantly, this approach offers the versatility to independently select the optimal solvents for the donor and acceptor materials that will deliver well-ordered nanodomains. This method also allows the direct stacking of multiple photoactive polymers with controllable absorption in a tandem structure even without an interconnecting junction layer. The introduction of multiple photoactive materials through multisource/component spray coating offers structural flexibility and tenability of the photoresponse for future polymer solar cell applications.
منابع مشابه
Spray-on Thin Film PV Solar Cells: Advances, Potentials and Challenges
The capability to fabricate photovoltaic (PV) solar cells on a large scale and at a competitive price is a milestone waiting to be achieved. Currently, such a fabrication method is lacking because the effective methods are either difficult to scale up or expensive due to the necessity for fabrication in a vacuum environment. Nevertheless, for a class of thin film solar cells, in which the solar...
متن کاملUltrasonic Spray-Coating of Large-Scale TiO2 Compact Layer for Efficient Flexible Perovskite Solar Cells
Flexible electronics have attracted great interest in applications for the wearable devices. Flexible solar cells can be integrated into the flexible electronics as the power source for the wearable devices. In this work, an ultrasonic spray-coating method was employed to deposit TiO2 nanoparticles on polymer substrates for the fabrication of flexible perovskite solar cells (PSCs). Pre-synthesi...
متن کاملFully spray-coated ITO-free organic solar cells for low-cost power generation
We report on cost-effective ITO-free organic solar cells (OSCs) fabricated by a spray deposition method. All solution-processable layers of solar cells—a highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer and a photoactive layer based on poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM)—were spray-coated. PEDOT:PSS a...
متن کامل- 1 - High efficiency arrays of polymer solar cells fabricated by spray - coating in air
We present bulk heterojunction organic solar cells fabricated by spray-casting both the PEDOT:PSS hole-transport layer (HTL) and active PBDTTT-EFT:PC71BM layers in air. Devices were fabricated in a (6 x 6) array across a large-area substrate (25 cm) with each pixel having an active area of 6.45mm. We show that the film uniformity and operational homogeneity of the devices are excellent. The cha...
متن کاملSpray-on PEDOT:PSS and P3HT:PCBM Thin Films for Polymer Solar Cells
PEDOT:PSS electron-blocking layer, and PEDOT:PSS + P3HT:PCBM stacked layers are fabricated by ultrasonic atomization and characterized by scanning electron microscopy (SEM) and optical profilometry. The measured thicknesses based on SEM and optical profilometry are quite different, indicating the incapability of measurement techniques for non-uniform thin films. The thickness measurements are c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 4 8 شماره
صفحات -
تاریخ انتشار 2010